Tailings Dam Breach Analysis (TDBA)

University of Alberta Geotechnical Grad Seminar March 1, 2023

For research purposes. ©Planet Labs PBC, CC BY-NC-SA 2.0

Hossein Kheirkhah, PhD, PEng Scott Laberge, MSc, EIT

Land Acknowledgement

• Edmonton is located within Treaty 6 Territory and within the Métis homelands and Métis Nation of Alberta Region 4. We acknowledge this land as the traditional territories of many First Nations such as the Nehiyaw (Cree), Denesuliné (Dene), Nakota Sioux (Stoney), Anishinaabe (Saulteaux) and Niitsitapi (Blackfoot).

 Calgary is located within Treaty 7 Territory and within the homeland of the Northwest Metis and Metis Nation of Alberta Region 3. We acknowledge that the land by which we do our work as the traditional territories of several First Nations peoples including the Siksika, Piikani, Kainai, Tsuut'ina, and Stoney Nakoda (comprised of the Chiniki, Bearspaw, and Wesley First Nations).

Topics to Be Discussed

- i. The "why" of TDBA
- ii. What Are Tailings?! Properties and Rheology
- iii. TDBA Background
- iv. Failure Modes and Scenarios
- v. TDB Process
- vi. Tailings Release Volume
- vii. Breach Modelling
- viii. Downstream Routing
- ix. Recommendations and On-going Research

The "why" of TDBA

- Definition: A tailings dam failure is defined as a physical breach of the dam followed by uncontrolled and typically sudden release of any or all stored materials.
- Critical to informing dam consequence classification
- Inform Emergency Response Plan (ERP) and Emergency Preparedness Plan (EPP) which are regulatory requirements in Alberta (and many other jurisdictions)

Mount Polley; image source: canadianconsultingengineer.com

What Are Tailings?!

- In the most basic sense tailings are the waste product produced from the processing of mined ores
- The properties of these tailings can vary dramatically
- The properties of the tailings are further varied by the depositional environment

Image source: Simms, 2016

Tailings Characterization and Liquefaction Potential

- Robust geotechnical investigations to determine the composition and characteristics of a tailings deposit are critical for TSF design, operations, and more
- Potential of tailings to undergo flow liquefaction is critical to TDBA
- A general rule is saturated tailings that exhibit contractive behaviour under shear should be assumed to experience flow liquefaction

Image source: gahag.net

So it flows - Rheology

- Tailings exist in the complex realm between soil mechanics and fluid mechanics
- If liquefaction occurs, what is the likely behaviour of the now fluid-like tailings in the case of a containment breach?
 - Materials such as tailings can exhibit complex non-Newtonian flow behaviours
 - Behaviour may not be consistent between initial mobilization and runout
 - Adequate rheological characterization of these tailings deposits is critical to inform any TDBA

Further Considerations

- Liquefaction potential can change dramatically as a result of the initial dam failure
- Tailings rheology is incredibly complex
- A model is only as good as its inputs

Figure 42. Dynamic Viscosity of Mudflow Samples versus Volumetric Concentration

Figure 42. Dynamic Viscosity of Mudflow Samples versus Volumetric Concentration

TDBA Background

- 1962 China, Huogudu, 3.3 Mm³ of tailings, 171 fatalities
- 1965 Chile, El Cobre, 0.35 Mm³ of tailings, 200 fatalities
- 1972 US, Buffalo Creek, WV, 0.5 Mm³ of tailings, 125 fatalities
- 1985, Italy, Strava, 0.2 Mm³ of tailings, 268 fatalities
- 2008, China, Toashi, 0.19 Mm³ of tailings, 277 fatalities
- 2019, Brazil, Brumadinho, 12 Mm³ of tailings, 267 fatalities

Useful links:

Chronology of tailings dam failures: WISE Uranium Project

A comprehensive global database of tailings flows (CanBreach): <u>CanBreach Research Data Base</u>

TDBA Background (Cont'd)

2019, Brazil, Brumadinho, 12 Mm³ of tailings, 267 fatalities

Useful links:

Planet Lab Daily Earth Data: Planet Lab -

https://www.youtube.com/watch?v=sKZUZQytads

Location: Córrego de Feijão mine, Brumadinho, Minas Gerais, Brazil Date: 2019, Jan. 25 Ore: Iron Incident: Tailings dam #1 failure Estimated Release Volume: 12 Mm³ Impacts: The tailings wave devastated the mine's loading station, its administrative area, and two

smaller sediment retention basins (B4 and B4A); it then traveled approx. 7 km downhill until reaching Rio Paraopeba, thereby destroying a bridge of the mine's railway branch, and spreading to parts of the local community Vila Ferteco, near the town of Brumadinho; the slurry was then carried further by Rio Paraopeba; 267 people were killed, and several are still reported missing. **Planet© Imagery Date:** 2019, Jan. 29

TDBA Background (Cont'd)

TDBA Background (Cont'd)

- No longer just a regulatory box to be checked
- The guidelines for TDBA are just coming out
- In 2021, the Canadian Dam Association (CDA) published the first bulletin for TDBA
- A short section in "Tailings Management Handbook – A lifecycle approach", in 2022 by SME

Tailings Dam Breach Analysis

Failure Modes and Scenarios

- Collapse of foundation
- Overtopping
- Contaminated seepage

Failure Modes and Scenarios (Cont'd)

Two common hydrologic conditions

- Fair weather (aka sunny-day)
- Flood induced (aka wet-/rainy-day)

BARR

Image Source: deviantart

What is specific to tailings dam failures (compared to water retaining dams)

- Mobilization of tailings
- Runout characteristics (i.e., hyper-concentrated or mud/debris flows)
- Breach shape and dimensions can be very different

TDB Process (Cont'd)

- Tailings dam breach processes are <u>complex and</u> <u>not fully understood</u>
- Can be assumed as two processes

Process I: Discharge of the supernatant pond that carries eroded tailings and dam fill materials
Process II: Discharge of flowable tailings due to tailings liquefaction or progressive slumping of unsupported tailings

Image Source: CDA

1. Regardless of the failure mode, the flow liquefaction referred to in this figure is related to the flow potential of tailings after the dam is breached.

BARR

TDB Process (Cont'd)

- If the volume of supernatant pond is relatively high, one could use Process I for estimating the mobilized tailings and total volume of runout.
- If there is no supernatant pond, or the pond is very small, or the pond is away from the dam, one may use Process II for estimating the mobilized tailings and total volume of runout.
- An alternative approach would be to combine the estimated total volume of tailings solids and water released during the breach to characterize a single <u>sediment-water mixture for the entire breach outflow</u> <u>hydrograph</u>.

Image Source: Adobe Stock

Tailings Release Volume Estimate

- A geotechnical analysis to determine if the tailings could liquefy (the trigger for tailings liquefaction is the dam failure)
- Estimate the volume of liquefied tailings from:
 - breach geometry
 - basin geometry
 - geotechnical data and analysis
- Estimate the volume of eroded tailings based on:
 - the volume of supernatant pond
 - basin geometry
 - geotechnical data

Liquefied

Tailings Release Volume Estimate (Cont'd) – Liquefaction Failure

Tailings Release Volume Estimate (Cont'd)

- Other simplified methods are available!
 - Statistical regression (e.g., Rico et al., 2008; Larrauri and Lall, 2018; etc.)
 - Flowability approximation (Fontaine and Martin, 2015) Estin 3.5 0.3 26.3 Liquefaction Slope Instability Overtopping Empirical Geometrical Flowability Reported Release Volume (Mm3)

Fig. 4 Release volume by method and failure mechanism

Mine Water and the Environment https://doi.org/10.1007/s10230-020-00718-2

TECHNICAL ARTICLE

Tailings Dam Breach Analysis: A Review of Methods, Practices, and Uncertainties

Hossein Kheirkhah Gildeh¹ · Alexandra Halliday² · Alfredo Arenas² · Hua Zhang¹

Gildeh et al. (2020): Paper on TDBA

Image Source: Gildeh et al. (2020)

Breach Modelling

- Breach modelling will identify the shape of the breach hydrograph and its peak
- Breach prediction methods for earthen dams
 - parametric models
 - semi-physically based models
 - physically based models

Useful links:

West et al. (2018): Breach Prediction Paper

```
A guide to breach prediction
M. West<sup>1</sup>, M. Morris<sup>2</sup> and M. Hassan<sup>3</sup>
```

¹ Student, University of Surrey, ² Senior Consultant, HR Wallingford, ³ Senior Engineer, HR Wallingford Editor: Craig Goff, HR Wallingford, <u>c.qoff@hrwallinqford.com</u>

Working with water				M. West	A guide to breach prediction 1, M. Morris2 and M. Hassan
Parametric Model	Time to Failure, $t_f(hr)$	Average breach width, $\overline{B}(m)$	Side Slopes, z (h: v)	Peak Outflow, $Q_p (m^2/s)$	Number of Case Studies
Froehlich (1995a, 1995b)	$t_f = 0.00254 V_w^{0.52} h_b^{-0.9}$	$B = 0.1803k_0 V_w^{0.32} h_b^{0.19}$ $k_0 = \begin{cases} 1.4 & OT \\ 1.0 & P \end{cases}$	$z = \begin{cases} 1.4 & 0T\\ 0.9 & P \end{cases}$	$Q_p = 0.607 V_w^{0.295} h_w^{1.24}$	1995a: 22, 1995b: 63
Walder & O'Connor (1997)				$\begin{split} Q_p &= a(h_w V_w)^b \\ \text{where:} \\ a, b &= \begin{cases} 0.99, 0.40 & Landslide \\ 0.61, 0.43 & Constructed \\ 0.19, 0.47 & Moraine \end{cases} \end{split}$	
Froehlich (2008)	$t_f = 0.0176 \sqrt{\frac{v_w}{gh_b^2}}$	$\overline{B} = 0.27 k_0 V_w^{\frac{1}{3}}$ Where: $k_0 = \begin{cases} 1.3 & OT \\ 1.0 & P \end{cases}$	$z = \begin{cases} 1.0 & OT \\ 0.7 & P \end{cases}$		74
Ku & Zhang (2009)	$\begin{split} \frac{t_f}{t_r} &= C_{\rm S} \left(\frac{h_d}{h_r}\right)^{0.654} \left(\frac{v_w^{1/3}}{h_w}\right)^{1.246} \\ \text{where:} \\ C_{\rm S} &= b_{\rm S} \\ b_{\rm S} &= \begin{cases} 0.038 & HE \\ 0.066 & ME \\ 0.205 & LE \end{cases} \end{split}$	$\frac{\bar{s}}{h_b} = 5.543 \left(\frac{v_w^{1/3}}{h_w}\right)^{0.729} e^{C_3}$ where: $C_3 = b_4 + b_5$ $b_4 = \begin{cases} -1.207 & OT \\ -1.747 & P \end{cases}$ $b_5 = \begin{cases} -0.613 & HE \\ -1.073 & ME \\ -1.268 & LE \end{cases}$	1	$\frac{q_p}{\sqrt{gv_w^{5/3}}} = 0.133 \left(\frac{v_w^{1/3}}{h_w}\right)^{-1.276} e^{C_4}$ where: $C_4 = b_4 + b_5$ $b_4 = \begin{cases} -0.788 & OT \\ -1.232 & P \end{cases}$ $b_5 = \begin{cases} -0.089 & HE \\ -0.498 & ME \\ -1.433 & LE \end{cases}$	75
Pierce at al. (2010)				$\begin{aligned} Q_p &= 0.0176 (V_w h_w)^{0.606} \\ Q_p &= 0.038 (V_w^{0.475} h_w^{1.09}) \end{aligned}$	87
Froehlich (2016a, b)	$t_f = 60 \sqrt{\frac{v_w}{gh_b^2}}$	$\overline{B} = 0.23k_0 V_w^{\frac{1}{3}}$ Where:	$z = \begin{cases} 1.0 & OT \\ 0.6 & P \end{cases}$	$Q_p = 0.0175 k_0 k_H \sqrt{\frac{g v_w h_w h_b^2}{\bar{w}}}$ Where:	2016a: 111, 2016b: 41

Breach Modelling (Cont'd)

Comparison 1: Two Semi-Physically Based Models vs One Parametric Model

BARF

Breach Modelling (Cont'd)

Comparison 2: HEC-RAS 2D Newtonian vs Non-Newtonian Breach

Downstream Routing

Outflow Regime

Downstream Routing (Cont'd)

Modelling Tools

FLOW-3D°

Solving the World's Toughest CFD Problems

Useful links:

Ghahremani et al. (2022): numerical runout model paper

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Review

A benchmarking study of four numerical runout models for the simulation of tailings flows

Negar Ghahramani ^a,*, H. Joanna Chen ^b, Daley Clohan ^c, Shielan Liu ^d, Marcelo Llano-Serna ^e, Nahyan M. Rana ^f, Scott McDougall ^a, Stephen G. Evans ^f, W. Andy Take ^g

Downstream Routing (Cont'd)

Modelling Tools

Image Source: CDA

Models	Туре	Case 1A	Case 1B	Case 2A	Case 2B	Newtonian Fluids	Non-Newtonian Fluids	Computing Cost	
DAMBRK	1D	Yes	Yes	-	-	Yes	-	Medium	
FLDWAV	1D	Yes	Yes	Yes	-	Yes	Yes		
HEC-RAS	1D/2D	Yes	Yes	Yes	-	Yes	Recently released		
FLO-2D	2D	Yes	Yes	Yes	-	Yes	Yes		
MIKE 11 & MIKE 21	1D/2D	Yes	Yes	Yes	-	Yes	Yes	High	
RiverFlow2D	2D	Yes	Yes	Yes	Yes	Yes	Yes	Medium to High	
TUFLOW	2D	Yes	Yes	Yes	-	Yes	Recently released	Medium to High	
Telemac-MASCARET System	2D/3D	Yes	Yes	Yes	-	Yes	Recently released	Medium to High	
FLOW-3D	2D/3D	Yes	Yes	Yes	Yes	Yes	Yes	High	
DAN3D	Quasi-3D	-	-	Yes	Yes	-	Yes	Not available	
MADFLOW	Quasi- 2D/3D	Yes	Yes	Yes	Yes	Yes	Yes	commercially	

BARR

Downstream Routing (Cont'd)

Fig. 10 Comparison of inundation extents between FLO-2D and FLOW-3D

Recommendations and On-going Research

- Some Recommendations...
 - Data & Data & Data & Data
 - Multidisciplinary team to tackle TDBA
 - "All models are wrong, but some are useful"
 - Uncertainties! sensitivity analysis on breach parameters (mainly B and t) and tailings rheology (mainly viscosity and yield stress)
 - Stay up-to-date

Recommendations and On-going Research

- On-going Research
 - CanBreach Project by UBC, Waterloo, Queen's (NSERC and Imperial Oil Resources Inc., Suncor Energy Inc., BGC Engineering Inc., Golder Associates Ltd., and Klohn Crippen Berger)
 - Barr Engineering with University of Ottawa
 - Other universities

Useful links:

CanBreach Project: CanBreach Website

BARR

Image Source: scholarlykitchen